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The stability of the relative equilibrium positions (collinear libration points) of the restricted circular photogravitational three- 
body problem, in which a passively gravitating point, in addition to experiencing the Newtonian gravity force from the main bodies 
(stars) also experiences forces of light pressure from each of them [1], is investigated. Previously obtained [2] conditions of stability 
are analysed from new viewpoints, enabling them to be presented more clearly. This is achieved by introducing, for each fixed 
pair of main bodies, a certain generalized parameter (which was used earlier [3, 4] in an examination of triangular libration points) 
and by transferring from the parameter space of the system to its configuraion space. © 2001 Elsevier Science Ltd. All rights 
reserved. 

The question of the existence and stability of libration points - the relative equilibrium positions in a 
system of coordinates rotating together with the main bodies - of the restricted photogravitational three- 
body problem has been in a number of papers (the most complete of these is given in [1]). As a result 
of comparatively recent investigations, carried out by various researchers, it has been established that 
if, within the framework of the model of the classical restricted three-body problem, the additional 
potential force field of light repulsion is taken into account, an entire family of new libration points is 
obtained, the coordinates of which are determined both by the parameters of the gravitational- 
repulsive field of the main bodies and by the "sail capacity" of the particles located in this field, 
represented by the ratio of the characteristic area of a particle to its mass. Part of this family is a set 
of libration points similar to two triangular libration points of the classical restricted three-body problem, 
while the other part is a set of points positioned on a straight line passing through the main bodies 
(regarded as point masses) and similar to five collinear libration points of the classical problem. It was 
shown in [2] that not only triangular libration points can be stable but also collinear libration points, 
which in the classical problem are always unstable. An extremely simple geometric interpretation of 
the conditions of stability of triangular libration points was given in [4], including the elliptical case of 
the problem, where the eccentricity of the orbit of the main bodies is small. This proved to be possible 
by transferring from the parameter space of the system to its configuration space, and by introducing 
a generalized parameter that characterized (along with the mass parameter used in the classical problem, 
which comprises the relative mass of one of the main bodies) the power of the radiation of each fixed 
pair of main bodies. These considerations make it possible to simplify considerably, and make physically 
clearer, the analysis of the stability and of the collinear libration points of the restricted circular 
photogravitational three-body problem. 

As is well known [1], the gravitational-repulsive force field of the restricted circular photogravitational 
three-body problem can be specified by the force function 

W = (x 2 + y 2 ) / 2 + Q l ( l - l t ) / R  1 + Q z g / R  2 

Q i = ( F i g - F i P ) l F i  g, R i = ( x - a i ) 2 + y 2 + z  2, i = 1 , 2  

(1) 

where x,y an z are the dimensionless (the distance between the main bodies is taken as the unit of length) 
Cartesian baricentric coordinates of a passively gravitating particle P in an Oxyz reserence system rotating 
uniformly about the Z axis with an angular velocity equal to unity, g and 1 - p. are the relative masses of 
the main bodies $2 and $1 (regarded as point masses), related to their total mass, a 1 = -g  and 
a2 = 1 - g are their dimensionless coordinates and Qi are the reduction coefficients of the mass of the 
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particle P, characterizing the influence of the repulsive field of the light pressure, where F p and F g are 
the forces of gravity and light pressure respectively. These coefficients can also be represented in the form 

Qi = l - q i ~ ,  qi=Ci/(fMi), ~=(l+l~)slrn (2) 

where f is the gravitational constant, Mi is the mass of the body Si, C i is a constant coefficient 
characterizing the power of its radiation and g is the sail capacity of a particle P (rn and s are respectively 
its mass and characteristic cross-sectional area, and e is the reflection coefficient). 

As can be seen, the influence of light pressure increases as the absolute particle size decreases and 
can be as large as desired even for particles of high density. It is also obvious that the physically possible 
value of the reduction factor cannot exceed unity (Qi = I if there is no light pressure from the body 
Si). 

From relations (2) it follows that, for any fixed pair of bodies $1 and $2, the reduction factors of particle 
P with any sail capacity must satisfy the relation 

(1 - Q2)/(I - Qj) = q2[ql = k 

From this it follows that, for any fixed pair of bodies $1 and $2, the reduction factors cannot take arbitrary 
values, a fact to which attention was drawn in [3, 4] when investigating the stability of triangular libration 
points. A consideration of arbitrary, unrelated values of Q1 and Q2 (as was done in all previous papers) 
involves the simultaneous examination not only of arbitrary points but also of various bodies $1 and 
$2, which hinders a clear physical interpretation of the results obtained. The parameter  k, equal to the 
ratio of the "specific" radiation powers of the main bodies, must be regarded as an additional 
characteristic (to the mass parameter  p) of the gravitational-repulsive field for a-fixed pair of main 
bodies. Obviously, k can take any non-negative values. When k = 0, we will have the case of a single 
radiating body. When k = 1, the "specific" radiation powers of both bodies are the same, from which 
it follows that Q~ = Q2. In practice, this is the most important case and will be examined in this paper. 

The equilibrium conditions, from which it is possible to determine the coordinates of collinear libration 
points, are found from the requirement that the first variation of the force function W must vanish, 
which, when y = z = 0, leads to the equation (summation over i is carried out from 1 to 2) 

x -  • aiQi(x-ai)/  R3i = 0  (3) 

A detailed analysis of Eq. (3) showed [2, 3] that, depending on the values of the reduction factors, 
both internal collinear libration points (positioned between the bodies $1 and $2) and external ones 
(positioned outside the segment $1S2) are possible. 

The stability conditions for the collinear points (derived from first-approximation equations) for all 
possible values of Q1 and Q2 are given by the inequalities [2] 

%<~A<~I, A=ZaiQi /R 3 (4) 

As in the classical problem, these conditions do not give secular stability and are only the conditions 
for gyroscopic stabilization. However, since the system in question belongs to the Hamiltonian class, 
these conditions mean complete Birkhoff stability, i.e. such a stability that holds when non-linear terms 
of as high (finite) an order in the equations of perturbed motion, as desired are retained with the 
exception, possibly, of the set of values of the parameters corresponding to second- and third-order 
resonance. Note, however, that non-satisfaction of conditions (4) means strict Lyapunov instability. 

We will show that the external libration points are unstable for any values of Q1 and Q2. Consider 
the libration points with coordinatesx < al = -~t. Taking into account also thatx = al - R  1, we substitute 
the value of Q1 determined by equilibrium condition (3), into the expression for A. This gives 

A = 1 +,u. ( l  - 0 2 / R 3 ) / R I  

The condition of stabilityA ~< 1 leads to the inequality Q2 ~> R3. However, since in the case considered 
R2 = 1 + R 1, we finally obtain Q2 > 1, which falls outside the range of physically permissible values of 
Q2. Since this conclusion holds for any values of ~t, external libration points positioned to the right of 
the body $2 will also be unstable. 

We will now consider internal points whose coordinates satisfy the inequalities - ~t < x < 1 - ~t. We 
will first examine the completely symmetrical case when Q1 = Q2 = Q and J.t = 1/2. The equilibrium 
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condition (3) is now written in the form 

2 x  + Q( R I  3 - R2 3) = 0 (5) 

from which it can be seen that, for the values o fx  cansidered, apart f romx = O, we will always have Q 
< O, and consequently 

2 A  = Q(R~ 3 + R~3)<0 

which does not satisfy the condition of stability (4). Thus, in the case considered, only the origin of 
coordinates (R1 = R2) can be a stable libration point. 

From Eq. (5) it follows that at this libration point there may be particles with any value of Q; here, 
only some of them may be stable. In fact, when R1 = R2 = 1/2, we will haveA = 8Q, and stability condition 
(4) gives 

1/9 ~ Q ~< 1/8 (6) 

i.e. in the completely symmetrical case there may in fact be an innumerable set of particles with different 
sail capacity at the origin of coordinates, the reduction factor of which satisfies stability condition (6). 
It is interesting to note that Q = 1/8 is the limiting minimum value for all triangular libration points 
possible in this case (as shown earlier [4], all triangular libration points in this case are situated on the 
y axis; their coordinates satisfy the inequalities - ~3/2 < y < 3/2, and Q takes all values from 1/8 to 1 
whe ny  = _+ ~'3/2). In this case, only those points for which the inequality [4] 

361a(1 - g )  sinZ(~j + IF2 ) ~< 1 

is satisfied will be stable. Here ~1 and/It 2 are the angles the vectors R1 and R2 make with the x axis. In 
the case in question (g = 1/2, ~1 = 1112 = II/), this condition gives 

sin 2 ~ ~< sin 2 ~* = 1/2 - 

i.e. all triangular libration points whose ordinates satisfly the condition ]Yl ~< Y* = 0.085786 ... will be 
stable. Since for triangular libration points the relations R 3 = Q[4] are satisfied, in the case considered 
the reduction factor of particles situated at these points decreases from the maximum value, equal to 
1/(8 cos 3 ~*) and corresponding toy  = y*, to 1/8 at the origin of coordinates, where, furthermore, there 
may be an innumerable set of particles whose reduction factor satisfies inequalities (6). 

We will now consider the case of arbitrary values of g (0 < g < 1/2), retaining the condition k = 1 
(QI = Q2 = Q). Equilibrium condition (3) can then be written in the form 

Qt /R  = 0 (7) 

whence, when R1 = R2 (x = 1/2 - g), we obtain Q = 1/8, irrespective of the value of p.. According to 
inequal i ty (6), the value of Q obtained (as in the case when I.t = 1/2) lies at the boundary of  the stabil ity 
region. However, unl ike the case when I.t = a/2, only one particle wi th a sail capacity corresponding to 
the Q value found can now be situated at this l ibrat ion point. 

Equat ion (7) is also satisfied by the values x = Q = 0 and, consequently, according to inequal i ty (6), 
the or igin of coordinates is now always unstable. We wi l l  show that all points for which x = 0 are also 
unstable. Since for stability it is necessary that Q > 0, Eq. (7) implies the inequality 

2 (8) 

from which it follows that g > (1 + 92) -1 should hold, where p = R1/R  2. The latter inequality with 
x < 0 (p < 1) implies that ~t > 1/2. However, the latter inequality contradicts the range of variation of 
p. considered, and thus the stability conditions in the range of variation ofx  and ~t considered cannot 
be satisfied. 

All libration points with x > 0, for which p > 1, will be unstable. In fact, for positive x and Q, as 
follows from Eq. (7), inequality (8) is reversed and can be satisfied for all ~t < 1/2. Substituting the value 
of Q given by Eq. (7) into the expression forA, taking the above into account, from the stability condition 
A < 1 we will have 
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[ ( 1 - I . t ) / R  3 +~t/ R3]x<~(1-~t)l R~ -t.t/ R~ (9) 

f rom which it follows that  p < 1. 
Hence ,  it r emains  to consider  the range la/(1 - p.) < 9 < 1, where  the opposi te  inequali ty to (8) is 

satisfied and where ,  according to inequali ty (9), A ~< 1. Substi tuting the value of  Q f rom Eq. (7) into 
stability condi t ion (6) A > 8/9, we will have 

[(l-~t)/ R3 +~t/ R3]x>8[(I-~t)/ R~-~t/  R]]/9 

The  inequali ty ob ta ined  can be reduced  to the fo rm 

fQ.t, p) = 1.12 --[l +b( I  + p2)]la + b ~  0 

b = p(1 + p)-I ( l  - p3)/9 

(10) 

Since in the range  cons idered  (p < 1) we have b > 0, the polynomialf(p. ,  9) always has, in relat ion 
to ~t, two positive roots  la1(9) and g2(9) > gl, and inequali ty (10) is satisfied if 0 < g ~< g1(9) or  

/> g2(19). It  can be shown that,  for  all the 9 values considered,  the larger  root,  which e m a n a t e s  f rom 
the range  of  var ia t ion of  g, considered,  is g rea te r  than unity, and consequently,  for  stability, only the 
one inequali ty ~t ~< gl (P)  must  be satisfied. 

Figure 1 shows a g raph  of  ~t1(9), which is the boundary  of the stability region, s i tuated below this 
curve. The  above analysis enables  us to conclude that, for any fixed g < 1/2, stable col l inear  l ibration 
points  can only exist in the range [9", 1] (contract ing to a point  as g ~ 1/2), where  

p* > . l / ( l  - lal) 

and ~t 1 is the smal ler  root  o f  po lynomia l  (9) when O = 9*. The  reduct ion factors of  part icles at points  
in this range  can be found using Eq. (7). 

This research  was suppor ted  financially by the Ministry of  Educa t ion  of  the Russian Federa t ion  
(EOO-11.0-28) .  
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